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Describing open quantum systems in terms of effective non-Hermitian Hamiltonians gives rise to nonunitary
time evolution. In this paper we study the impact of nonunitary dynamics on the emergent hydrodynamics in

quantum systems with a global conservation law. To this end we demonstrate how linear-response correlation
functions can be generalized and interpreted in the case of non-Hermitian systems. Moreover we show that
dynamical quantum typicality provides an efficient numerical approach to evaluate such correlation functions,
even though the nonunitary dynamics leads to subtleties that are absent in the Hermitian case. As a point of
reference for our analysis, we consider the Hermitian spin-1/2 XXZ chain, whose high-temperature transport
properties have been characterized extensively in recent years. Here we explore the resulting hydrodynamics for
different non-Hermitian perturbations of the XXZ chain. We also discuss the role of integrability by studying the
complex energy-level statistics of the non-Hermitian quantum models.
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I. INTRODUCTION

The relaxation of many-body quantum systems towards
thermal equilibrium is a topic which has attracted much in-
terest over the last few decades [1-4]. In the presence of
a global conservation law, e.g., energy, particle number, or
magnetization, the long-time dynamics of such systems are
governed by an effective hydrodynamic description that arises
from the underlying microscopic equations of motion [5-7].
In chaotic systems, the emerging high-temperature hydrody-
namics are usually expected to be diffusive [S—10]. In contrast,
in the case of integrable systems, the extensive set of con-
stants of motions typically leads to ballistic or superdiffusive
transport [11,12], which can also be understood within the
framework of generalized hydrodynamics [13,14]. Exploring
the emergence of different types of transport is an active
area of research both on the experimental side, especially
in cold-atom and trapped-ion platforms [15-17], but also in
more traditional solid-state settings [18,19], as well as on the
theoretical side, where sophisticated numerical techniques are
being developed [20-23].

While the time evolution of an ideally isolated quantum
system is unitary and described by the Schrodinger equa-
tion, perfect isolation from an environment is not always
realistic. The dynamics of the actual open system might
then be described in terms of, e.g., quantum master equa-
tions or by considering suitable non-Hermitian Hamiltonians
[24-27]. Not least spurred by the improved experimental con-
trol over non-Hermitian systems [28—32], various fascinating
aspects have been explored in recent years, including the
non-Hermitian skin effect [33-35], exceptional points and
generalizations of topological phases [36—41], quantum chaos
[42-51], eigenstate thermalization [52,53], and many-body
localization [54-57]. The study of non-Hermitian systems is
interesting also in a broader context, as the nonunitary dynam-
ics provides a framework to study new phenomena and realize
novel out-of-equilibrium phases of matter [58—62].
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In this paper we explore how nonunitary time evolution,
governed by non-Hermitian Hamiltonians, affects the emerg-
ing hydrodynamics in quantum systems with a conserved
quantity. While there is a long history of studying transport
in boundary-driven systems, where the system-bath setup
is modeled by a Lindblad master equation [7,63], studying
transport directly from the point of view of non-Hermitian
Hamiltonians has received less attention. As a convenient
starting point, we consider the integrable and Hermitian spin-
1/2 XXZ chain, the high-temperature transport properties of
which are well established in the literature [7,12,64]. In par-
ticular, we will study different non-Hermitian deformations of
the XXZ model, including an interacting spin-chain version
of the Hatano-Nelson model with asymmetric hopping ampli-
tudes, as well as a disordered spin chain with non-Hermitian
random-field terms.

Transport in many-body quantum systems is commonly
studied in terms of time-dependent linear-response correlation
functions [7]. We here proceed in an analogous way for the
non-Hermitian setting and propose a generalization of such
correlation functions to systems with nonunitary dynamics
[65]. This generalization connects to standard definitions of
nonunitary time evolution in quantum systems and has an
appealing experimental interpretation, which is admittedly
quite costly however due to the requirement of postselection
in non-Hermitian systems. In order to numerically evaluate
these correlation functions, we moreover demonstrate that the
concept of dynamical quantum typicality (DQT) is applicable
also in the case of non-Hermitian quantum systems. In par-
ticular, we show that on the timescales where the dynamics
exhibit hydrodynamic behavior, DQT yields accurate results
if the system sizes are sufficiently large.

The non-Hermitian perturbations considered in this paper
are found to affect the transport properties of the original XXZ
chain in different ways, with relaxation becoming faster or
slower depending on the model. We also study the role of
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integrability and find that while certain non-Hermitian pertur-
bations leave the integrability of the XXZ chain intact, others
induce the emergence of chaos and random-matrix energy
level statistics. Interestingly, our results suggest that there
exist short-range non-Hermitian quantum systems which sup-
port faster than diffusive, or even ballistic, transport, despite
being chaotic and nonintegrable.

The rest of this paper is structured as follows. We define
the models and observables in Sec. I, including the complex
eigenvalue-gap ratio as an indicator of chaos in non-Hermitian
systems [45]. We also discuss our generalization of dynamical
correlation functions in the case of non-Hermitian systems. In
Sec. III we then highlight DQT as a means to simulate such
correlation functions for systems sizes beyond the range of
full exact diagonalization (ED). Our numerical results are pre-
sented in Sec. IV, where we explore integrability-breaking and
transport properties for different non-Hermitian Hamiltoni-
ans. We also discuss the challenges that occur when applying
DQT for systems undergoing nonunitary time evolution. We
summarize and conclude in Sec. V.

II. MODELS AND OBSERVABLES

We study an interacting version of the Hatano-Nelson
model written in terms of spin-1/2 operators [54,55,66-69],

L
1 _ g . .
H= Zz(egSZS“_l +ets, SZH) + ASZSEH + AZSZSEH’
=1

ey

where S;E =8 =* iS'Z, A 2> 0 (A, > 0) controls the strength
of (next-)nearest-neighbor interactions, L is the system size,
and we consider periodic boundary conditions. While Eq. (1)
is Hermitian at g = 0, a finite g # 0 leads to an asymmetry
in the hopping amplitudes such that the model becomes non-
Hermitian, H' # H.

At g =0and A, = 0, H reduces to the paradigmatic inte-
grable spin-1/2 XXZ chain. While spin transport is ballistic
in the XXZ chain for A < 1 with a finite Drude weight,
numerical evidence indicates that it is diffusive for A > 1 [7].
Moreover, at the isotropic point A = 1, spin transport appears
to be superdiffusive with certain features being described by
Karder-Parisi-Zhang universality [70]. For finite A,, the XXZ
chain becomes nonintegrable and transport appears diffusive
for all choices of A # 0 and A; # 0 [71]. In this paper, we
study how integrability and transport characteristics change
when turning to the non-Hermitian system with g # 0.

The nonreciprocal hopping terms in Eq. (1) are reminis-
cent of the dynamical rules in asymmetric simple exclusion
processes known from nonequilibrium statistical mechanics
[72,73]. Indeed, mappings between such classical hopping
models and non-Hermitian Hamiltonians have been consid-
ered [74]. Moreover, analogous to the standard XXZ chain,
the asymmetric variant in Eq. (1) with A, = 0 is known to be
Bethe-Ansatz integrable [75] (see also a similarly integrable
non-Hermitian Bose-Hubbard model in [76]). We confirm its
integrability below in terms of the level-spacing statistics.

More recently, the Hamiltonian (1) has been studied
in different contexts, including the addition of quenched
disorder which can induce non-Hermitian many-body

localization [54,55]. In the context of transport, let us note
that the asymmetric hopping terms can be obtained from
cosh(g)Hxy + isinh(g)J, where Hyy = (1/2))", SZFS[H +
S;Sf . and J =(i/2)Y, S S, —S; S, is the spin-
current operator. The non-Hermiticity in Eq. (1) can thus be
interpreted as an external driving by the current J [68].

While our focus will be on the model with asymmetric
hopping in Eq. (1), we will also study an XXZ chain perturbed
by imaginary random on-site potentials [77,78],

L
H = Zsf%—s—l + 5552;1 + 8¢Si1 — theny, @)
=1

where ny =S + %, and the h; € [0, W] are independently
drawn at random from a uniform distribution with W setting
the disorder strength. Equation (2) closely resembles the dis-
ordered XXZ chain that has become the prototypical model to
study the MBL transition [79]. In our case, however, the dis-
order in Eq. (2) is non-Hermitian. The dynamics generated by
the Hamiltonian in Eq. (2) can be interpreted as the no-jump
trajectory in the stochastic unravelling of a Markovian open
quantum system. In the trajectory approach, pure states evolve
according to an effective non-Hermitian Hamiltonian [80,81],
Her = H — (i/2) ) ijjij, where L; are the jump opera-
tors occurring in the Lindblad equation, y; > 0, and Eq. (2)
would correspond to L; ~ S;". While at large W, this type of
disorder might cause a localization transition [77], we expect
the non-Hermitian terms in Eq. (2) to favor thermalization if
disorder is moderate. This expectation is substantiated by our
numerical results below for W = 1.

A. Level-spacing statistics with complex eigenvalues

In the case of Hermitian systems with real-valued
spectra, a useful quantity to distinguish integrable from
chaotic systems is the ratio of adjacent level spacings,
min(8, 8pt1)/mMax (8, 8pt1), where 8, = Eppy — Ep [82].
A generalization of such level-spacing ratios to non-Hermitian
systems with complex spectra has been introduced in [45]. In
particular, given a Hamiltonian with complex eigenvalues E,,,,
one can define

ENN — E,

Im =

— O
=S EW_g, - ome"™, 3)

where ENN and ENYN are the nearest and next-nearest neigh-
bors of E,, (i.e., the eigenvalues that minimize the Euclidian
distance on the complex plane). The z,, are complex numbers
within the unit circle (0, < 1; —m < 6,, < m), for which we
can study the full distribution P,(p, 0), as well as average
values, e.g., (0) and (cos 6). In particular, for integrable sys-
tems, the z, are expected to be uniformly distributed such
that (¢) = 2/3 and (cos ) = 0. In contrast, for nonintegrable
non-Hermitian systems, the distribution of z,, is anisotropic,
which will lead to different (o) and (cos 6) [45].

B. Dynamical correlation functions

A common approach to study transport properties in Her-
mitian many-body quantum systems is to consider dynamical
correlation functions (often at formally infinite temperature),
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C(r, 1) =[S, (1)S;pc], Where Si(t) is the time-evolved
operator in the Heisenberg picture, r is a distance between
two sites, and ps = 1/2 is the infinite-temperature density
matrix. In the case of non-Hermitian systems with nonunitary
time evolution, one has to be careful how to meaningfully
define such correlation functions; see Appendix B. Building
on previous works [65], we define the time evolution of a
non-Hermitian system prepared in some density matrix p(0)
as

efthp(O)eiH"’t
tr[e"‘H’p(O)e’.HT’] ?
where the time-dependent renormalization becomes trivial if
H is Hermitian. Next, we use that S§ commutes with the
total magnetization M* =}, S;, and we decompose both

operators in terms of projectors onto their eigenspaces, i.e.,
S; =2 sllyand M* =" mlIl,, where s = £1/2 and m =

plt) = @)

—L/2,...,L/2. As we discuss more generally in Appendix B,
we can then write
Crt) = s [T mpo) (S5, (D), ,- )
s,m

where we introduced the time-dependent expectation value,

(S5 O, = a[Si,,oem®)], (6)

which is conditional on the measurement outcome of S} and
M* at t = 0. Namely, py,,(0) = I 1000 [, /[T 1 000] 18
the infinite-temperature density matrix projected into a com-
mon eigenspace of S; and M* with eigenvalues s and m.
Since I, ,, is a projection, Hf’m = Il ». Moreover, the time
evolution of p; ,(¢) in Eq. (6) is interpreted as in Eq. (4).

From a, say, experimental point of view, writing the cor-
relation function C(r, t) as in Eq. (5) has a straightforward
interpretation. Measure S7 and M* at ¢t = 0, measure S7
at time ¢, and over many runs compute the time-dependent
expectation value conditional on the measurent outcomes and
corresponding probabilities at ¢ = 0.

Conceptually, the advantage of Eq. (5) is that the to-
tal density, Z, C(r,t), remains conserved over the course
of the nonunitary time evolution such that the analysis of
transport properties is meaningful. In standard Hermitian sys-
tems, the conservation of magnetization is already guaranteed
by [H, M*] = 0. In contrast, for non-Hermitian systems, the
renormalization (4) of the state during the nonunitary time
evolution could cause M* to be nonconserved if one were to
proceed without projecting p(0) into a fixed M* sector; see
Appendix B for more details.

Given the correlation function C(r,t), the type of trans-
port can then be inferred from its spatiotemporal dynamics.
For instance, at sufficiently long times, the on-site correlator
C(0, t) is expected to develop a hydrodynamic power-law tail,
C(0,1) o< t—#, where (in one dimension) 8 = 1/2 indicates
diffusion, 8 = 1 indicates ballistic transport, and 1/2 < B <
1 (B < 1/2) signals superdiffusion (subdiffusion) [7].

While the above experimental interpretation is certainly
appealing, it should be noted that the experimental realization
of non-Hermitian dynamics arising from the no-jump trajec-
tory of a Lindbladian is highly challenging. This is due to
the fact that acquiring data for a single run lasting a time
T requires postselecting on a jump not happening during

the interval [81], which increases the experimental resources
required exponentially. Specifically, since Lindblad dynamics
are Markovian, the probability of a jump not happening during
a time interval of length T decays like e 7 for some constant
k. If the number of jump operators acting on the system
scales with system size L [as is the case in the Lindbladian
corresponding to Eq. (2)], then « can depend on L and the
experimental resources required can scale exponentially in
both time 7" and system size L.

III. METHODS

A. Dynamical quantum typicality

The notion of quantum typicality describes the fact that
random pure quantum states, drawn from a high-dimensional
Hilbert space, can accurately represent properties of the full
statistical ensemble [8§3—86]. From a numerical point of view,
this can be exploited to approximate equilibrium expecta-
tion values by estimating the trace over the Hilbert space
using random pure states [87-93]; see [94,95] for reviews.
More concretely, taking the spatiotemporal correlation func-
tion C(r, t) in Eq. (5) as an example, we can approximate it by
the pure-state estimate,

Cy(rt)= Zs

where we have introduced the projected state |y ),

s 1Y)
s,m] = = 8
Vi) (VI ) ®

””] (WYsmO S5y, [Wem@) ., (T)

and |{) = Zi; ¢k |k), is a random state in the computational
basis with the complex coefficients ¢, drawn from a Gaus-
sian distribution with zero mean, and then normalized so that
[ 1Y) || = 1. (See Appendix C for more details.) Thus, [/ )
is a random state in a subspace with fixed eigenvalue s of S}
and m of M*.

The numerical advantage of DQT stems from the fact
that one does not need to treat the full density matrix p(z),
but only has to deal with pure states instead. Crucially, for
local Hamiltonians, the time evolution of pure states can be
achieved by efficient sparse matrix techniques without full
exact diagonalization. As a consequence, system sizes beyond
the range of ED can be studied, and we here present results
for C(r,t) up to L < 24. Analogous to Eq. (4), we explicitly
preserve the state’s norm over the course of the time evolution
governed by the non-Hermitian H,

e 1Yy m(0))
e~ 135, (0)) 11

where, in practice, we will actually evolve the state by a
(sufficiently small) discrete time step using a Runge-Kutta
scheme, |, (¢ + 8t)) = e~ |y, ,.(¢)), and normalize after
each such time step.

DQT has been applied extensively as a useful numerical
tool to study Hermitian many-body quantum systems. It relies
on the largeness of the Hilbert space such that the accuracy of
the random-state approximation Cy (r,t) ~ C(r, t) improves
exponentially with increasing system size [94]. In practice, a

[Vsm(2)) = ®
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single realization of the random state |y) is often enough to
obtain results with negligible statistical errors.

In case of non-Hermitian H, however, the time evolution
in Eq. (9) will enhance (suppress) the relative weight of the
wave function’s components. Namely, in the long-time limit,
[¥5.m(2)) will converge towards the eigenstate of H that be-
longs to the eigenvalue with the largest imaginary part (or
a superposition of such eigenstates if that eigenvalue has a
degeneracy). Thus, with growing ¢, fewer eigenstates will
contribute to | ,,(¢)) such that the typicality approximation
is expected to become less accurate.

We can study the accuracy of DQT by considering the
relative variance [96],

Co(rn1)? —Cylr1)
Con )

R(t) = , (10)

where the overline indicates averaging over random realiza-
tions of the state |y). Self-averaging behavior is indicated
by an R(¢) that decreases with increasing system size [96].
In the Hermitian case, R(t) decreases exponentially with L,
highlighting that only a single instance of |y) is required if L
is sufficiently large [97].

IV. RESULTS

A. Breaking of integrability

We study the impact of g > 0 and A, > 0 on the inte-
grability of the Hamiltonian in Eq. (1) by considering its
energy-level statistics. In order to avoid mixing of eigenvalues
with different quantum numbers, our results are obtained in
the symmetry subspace with lattice momentum ¢ = 2w /L
and total magnetization M* = 1. This choice also resolves
potential spin-flip or reflection symmetries of H.

In Fig. 1 we study the distribution of level-spacing ratios z
[cf. Eq. (3)] for L =22, A = 1.5, and fixed non-Hermitian
hopping asymmetry g = 0.2. In Figs. 1(a)-1(c), data are
shown for the nearest-neighbor chain with A, = 0. We find
that the z are approximately homogeneously distributed over
the unit circle with the corresponding marginal distributions
P(o) = 20 and P(0) ~ 1/(27). Such behavior is expected for
integrable non-Hermitian systems [45]. Thus, while a finite g
breaks the Hamiltonian’s Hermiticity, g > 0 is not sufficient
to lift the original integrability of the XXZ chain [45,74,75].

The picture is clearly different when considering next-
nearest-neighbor interactions with A, = 1.5; see Figs. 1(d)—
1(f). In particular, we find that spacing ratios z with small
o — 0 are less likely to occur. Moreover, the distribution
becomes 6-dependent with suppressed weight around 6 = 0.
This indicates that, analogous to the Hermitian XXZ chain
[71], a finite A, > 0 will make the model nonintegrable.

From the distributions P(p) and P(@) in Fig. 1, we obtain
the averages (o) and (cos 6), which are shown in Fig. 2 versus
system size L. While for A, = 0, (o) and (cos 6) are close to
the expected values of the integrable Poisson distribution, we
find that the data for A, = 1.5 approach with increasing L the
prediction of the nonintegrable Ginibre ensemble as described
in [45]. These results substantiate our findings from Fig. 1
that the non-Hermitian perturbation g > 0 is not sufficient to

0

FIG. 1. Level-spacing statistics for the Hatano-Nelson model
with L =22, A = 1.5, and g = 0.2. (a)—(c) Distribution of z = ge®
on the complex plane [Eq. (3)], as well as marginal distributions P(o)
and P(0), obtained for A, = 0. (d)—(f) Analogous data, but now for
A, =1.5.

break integrability, whereas the next-nearest-neighbor interac-
tion A, > 0 causes the model to become chaotic.

In Appendix A, we present additional results for the level-
spacing statistics of the XXZ chain perturbed by random
imaginary fields; cf. Eq. (2). In contrast to the non-Hermitian
hopping asymmetry g # 0 [Fig. 1(a)], the results in Ap-
pendix A suggest that the XXZ chain indeed becomes
nonintegrable in the presence of non-Hermitian disorder [77].

0.74 s v o ¢ o # o @ o ¢ ® ] e s st — — —]
e [ ]
072 =01 ® Poisson =---- o ® e
g=02 @ Ginibre =—--
§047O' r
0.68F L
(a) @ (b)
....................... DQ
066 g . . L . . .
0.1 ®
@ [
@ [ ®
OVD;------------------------.------------- ;; -----------------------------------
B ®
S o
£ -oa1r H ° .
¢ H
-02r (c) r(d)
16 18 20 22 16 18 20 22
L L

FIG. 2. Finite-size scaling of average values (o) and (cos®@)
for g =0.1,0.2 and L = 16, 18, 20, 22. Data are compared to the
predictions of the Poisson (dotted) and Ginibre (dashed-dotted) en-
sembles [45]. (a), (b) (o) for A; =0 and A, = 1.5. (¢), (d) {cos8)
for A, =0and A, = 1.5. A = 1.5 in all cases.
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(b) g=0.2
S )
- )
7 4
Cy(0,1) j
-2 n n n n
10 10° 10! 10° 10!

time ¢ time ¢

FIG. 3. Comparison between dynamical quantum typicality and
exact diagonalization for system size L = 10. (a), (b) Spin autocor-
relation function C(0,¢) for g=0 and g = 0.2. DQT data (solid
curves), averaged over 200 random |v/), agree convincingly with ED
(symbols). DQT data obtained from a single random state (dashed
curves) show clear deviations from the average especially in the
non-Hermitian case. We have A = 1.5 and A, = 0 in all cases.

B. DQT in non-Hermitian systems

Let us now analyze the accuracy of dynamical quantum
typicality applied to systems with nonunitary time evolution.
To this end, in Fig. 3 we present a comparison between DQT
and ED using a small system size L = 10. We consider the on-
site spin correlation function C(0, ¢) and study both Hermitian
(g = 0) and non-Hermitian (g = 0.2) systems. For a single
exemplary realization of the random state |y), we find that
the pure-state estimate Cy, (0, ¢) exhibits clear deviations from
the exact result.

These fluctuations are expected for L = 10 where the
Hilbert-space dimension is still not big enough to suppress the
statistical error sufficiently. Moreover, while the fluctuations
of Cy(0,¢) in the Hermitian case remain fairly controlled
for all times shown here [Fig. 3(a)], they become more
pronounced with increasing ¢ for g = 0.2 [Fig. 3(b)]. This
phenomenon is discussed in more detail in the context of
Fig. 4 below.

As mentioned in Sec. III, the accuracy of the pure-state
approximation (7) can be improved by averaging over mul-
tiple random realization of |¢). Indeed, as shown in Fig. 3,
the averaged correlation function Cy, (0, ¢) (here obtained from
200 independent runs) agrees perfectly with the ED data.
Furthermore, in Appendix E we show that such a convincing
agreement between the random-state approach and ED can
be obtained for other classes of correlation functions as well,
i.e., current-current correlation functions also relevant in the
context of transport.

Strictly speaking, quantum typicality refers to the fact that
(for large Hilbert spaces) the pure-state estimate Cy (1, t) is
close to the exact result such that no averaging is required.
To study this issue in more detail, we show in Fig. 4 the
averaged correlation function Cy, (0, 1) for g =0 and g = 0.2
[Figs. 4(a) and 4(b)] together with their corresponding relative
variance R(r) [Figs. 4(c) and 4(d)]. Plotting data for different
system sizes L, we find that R(¢) decreases exponentially with
increasing L if H is Hermitian [97]. In other words, choosing a
single random |v) will yield results very close to the ensemble
average C(0, t) in the Hermitian case.

In the non-Hermitian case, we find that R(¢) also decreases
with L on short to intermediate timescales. However, R(¢)
becomes essentially independent of L at longer times, where

1074
“;
S
10° q
10-24(c) 9=0 {(d)g=02
= 107 1
=
10764 ]
107% 1
(e)g=0 (f) g=0.2
10724 E
=
~
1073 4 E
101 10° 10! 101 10° 10!
time ¢ time ¢

FIG. 4. (a), (b) Cy(0, 1) obtained by averaging over 150 random
states for system sizes L = 10, 12, 14 with g =0 and g = 0.2. In all
panels we have A = 1.5 and A, = 0. (c), (d) Corresponding relative
variances R(t); cf. Eq. (10). (e), (f) Averaged inverse participation
ratio I(t), as defined in (11), of the state |y, ,(¢)) for the subspace
with m = 0.

the correlation function C(0,¢) has approximately reached
its long-time value C(0,t — oo) — 1/(4L). Thus, at these
timescales, self-averaging and typicality are absent such that
averaging over multiple |y) is still required at larger L.

Eventually, it is instructive to connect the behavior of R(¢)
to the inverse-participation ratio of the state |y (¢)),

1) = STlHgalw )t D

1
(X, [(@ult @) ?) 5

which measures how extended |y (¢)) is in a certain basis.
Here we will choose the |¢,) as the right eigenvectors of H
in a fixed symmetry subspace of dimension N. While it is
possible to choose bases of left and right eigenvectors for
a non-Hermitian Hamiltonian which are biorthogonal, it is
not possible to simultaneously make every right eigenvector
normalized and every left eigenvector normalized [26]. In
Eq. (11) we take each right eigenvector to be normalized.
For Hermitian systems, Eq. (11) reduces to the well-known
expression,

10) =Y 1galp )", (12)

An interpretation of Eq. (12) in terms of the outcomes of a
particular measurement process is given in Appendix D such
that Eq. (11) becomes a natural extension of Eq. (12) to non-
Hermitian systems.
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For a Haar-random initial state |1/), we expect it to be fully
extended in any given basis such that | (¢, |V (¢)) |4~ 1 /./\/'2
and 1(0) ~ 1/N [96].

In the Hermitian case [Fig. 4(e)], the dynamics of I(¢) are
trivial. The unitary time evolution merely leads to different
phases of the eigenstates such that /() remains constant.
In contrast, for non-Hermitian systems, the spectrum of H
is complex in general. The imaginary parts of the eigenval-
ues, combined with the renormalization of [ (¢)) in Eq. (9),
will suppress or enhance the contributions of certain eigen-
states [68]. Indeed, as shown in Fig. 4(f), we find that I(¢)
starts growing significantly for ¢ 2> 5. Thus, the random state
|¥s.m(2)) in Eq. (8) becomes less extended (i.e., less typical)
with increasing . As a consequence, the statistical error of the
pure-state estimate Cy, (0, 7), which relies on the randomness
of |, (1)), is expected to increase. This explains that the
relative variance R(¢) in Fig. 4(d) ceases to decay with L at
long times.

The analysis in Fig. 4 suggests that DQT is less useful
in systems with nonunitary time evolution. Nevertheless, we
have demonstrated in Fig. 3 that highly accurate results, which
agree with ED, can certainly be obtained if the pure-state data
are averaged over sufficiently many random |v/). Moreover,
in practice, we are not interested in the long-time regime
where the correlation function has completely decayed and
self-averaging breaks down. Rather, our focus will be on the
intermediate timescales for which C(r, t) exhibits hydrody-
namic behavior. On these timescales, R(¢) still decreases with
L such that the accuracy of DQT is expected to improve with
increasing system size. We will confirm this expectation in
the next section, where we discuss transport properties based
on DQT data with system sizes up to L = 24. A schematical
definition of what is meant in this context by “intermediate”
or “late” timescales is given in Appendix F.

C. Transport
1. Asymmetric XXZ chain

We now turn to the transport properties of the Hatano-
Nelson model (1). The on-site spin-spin correlation function
C(0, t) is shown in Fig. 5 for an integrable (A = 1.5, A, = 0)
and a nonintegrable (A = A, = 1.5) parameter choice with
fixed system size L = 24. In both cases, we show data for
the Hermitian g = O chain as well as for finite non-Hermitian
hopping asymmetry g = 0.1, 0.15, 0.2.

For concreteness, we especially focus the nonintegrable
model in the following [Fig. 5(b)], for which the numeri-
cal data are somewhat cleaner and easier to interpret. The
overall phenomenology, however, also applies to the A, =0
model. As a point of reference, we observe a hydrodynamic
power-law tail consistent with C(0, ¢) t~1/2 for the Hermi-
tian g = O case, indicating diffusive transport as expected in
the easy-axis regime of the (nonintegrable) XXZ model [7].
Moreover, we find that adding a finite hopping asymmetry
has a striking effect on the resulting dynamics, with C(0, t)
decaying significantly faster. Specifically, on the finite time
and length scales numerically available to us, the dynamics at
g = 0.2 are consistent with C(0, ¢) t~# with 8 2 1, which
suggests that transport becomes ballistic in the non-Hermitian
model. In particular, these signatures of ballistic transport

10—1 4

C(0,t)

10—2 J

10° 10 10° 10"
time ¢ time ¢

FIG. 5. Spin-spin autocorrelation function C(0,¢) for L =24
and g =0,0.1,0.15, 0.2, obtained using DQT. Each curve is ob-
tained by averaging over six random-state realizations, and the area
within 2 standard errors of the mean (assuming Gaussian errors)
is shaded. (a) A = 1.5and A, = 0. (b) A =1.5and A, = 1.5. The
dashed lines are power-law fits (beginning at ¢t = 5) to the hydrody-
namic tail. The horizontal line indicates the equilibrium long-time
value of C(0,t). For visual clarity, curves are not shown after the

average of C(0, t) reaches its equilibrium long-time value.

represent an exception to the common belief that chaotic
systems with short-range interactions exhibit conventional
diffusion. While the numerical data shown in Fig. 5(b) for
g = 0.2 are best described by a power-law fit with 8 strictly
greater than 1, the extraction of asymptotic hydrodynamic
behavior from simulations of finite-size systems is known to
be a challenging problem. It would be interesting to study in
future work whether the potential “superballistic” transport at
large g is a finite-size effect, or whether it can be conceptually
connected to the breakdown of Lieb-Robinson bounds and fast
operator spreading in non-Hermitian systems [98,99].

We note that the data in Fig. 5 for L = 24 are obtained
using the pure-state approach (7) by averaging over just a few
(£10) random pure states. We find that this yields sufficiently
small statistical fluctuations in the intermediate time regime
where C(0, t) decays as a power law. This demonstrates that
DQT indeed provides a useful numerical tool to study the
dynamics of non-Hermitian many-body quantum systems.

To proceed, we can study the emerging hydrodynamics
in more detail by analyzing the full spatial profile C(r,t)
at a fixed time r =9 in Fig. 6, where we again consider
the integrable A, = 0 chain [Fig. 6(a)] and a nonintegrable
A = A, = 1.5 parameter choice [Fig. 6(b)]. In the Hermi-
tian g = 0 model, C(r,t) is known to be well described by
Gaussians signaling normal diffusion [7,71]. Consistent with
the faster decay of C(0, t) in Fig. 5, we find that the profiles
C(r, t) are broader for g > 0 compared to the Hermitian ref-
erence case. Interestingly, at least in the bulk of the system
where finite-size effects are less relevant, C(r, t) appears to
remain approximately Gaussian in the non-Hermitian model.
In this context, let us also emphasize that, even though a finite
g > 0 leads to an asymmetry between left and right hopping
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FIG. 6. C(r,t)forg =0,0.1 at fixed timez = 9. (a) A = 1.5 and
A, =0; (b) A=1.5and A, = 1.5. We have L = 24 in all cases,
with the average of six random-state realizations shown per choice
of parameters. Dashed lines are Gaussian fits. To reduce finite-site
effects, the five sites furthest from the central site are not shown here
and are not used in the Gaussian fits. Error bars are 42 standard
errors of the mean (assuming Gaussian errors).

amplitudes, the spreading of correlations measured by C(r, t)
remains symmetric.

The preservation of left-right symmetry may seem sur-
prising, but can be understood from Haar-randomness of
the initial states and the fact that we here consider the
“erand-canonical ensemble,” i.e., we average C(r,t) over all
subsectors of total magnetization M<. Specifically, consider
a toy model of three spin—% particles with a discrete time-

evolution operator U = Z?:] S[SZFH, which has only right

hopping and no left hopping. If the system started in the
state || 1)) and we applied U, we would get || | 1), breaking
left-right symmetry as expected. But if we initiate the system
in a Haar-random initial state |y) except with the middle spin
up [Eq. (8)], then consider that || 11) evolves to [111), [111)
evolves to |1} 1), and |111) evolves to [111). So (since U
is linear) the average of (| U 7LSEU [¥) (over random initial
states) for £ = 1, 2, 3 will be %, 0, %, respectively, preserving
left-right symmetry. Note that if we had included only the
M+ = +% sector then the average of (y|U TSEU [v) (over
random initial states in that sector) for £ = 1, 2, 3 would have
been %, 0, 0, violating left-right symmetry.

2. Spin chain with non-Hermitian disorder

We now study the model given in Eq. (2), i.e., an XXZ
chain perturbed by a non-Hermitian random potential. In
Fig. 7(a) the on-site correlation function C(0, ¢) is shown
for W =0 and W =1 with L =18. As a point of refer-
ence, superdiffusive oc 772/3 scaling of C(0, ¢) is expected in
the Hermitian W = 0 case [7,12,64,70]. In contrast, for the
non-Hermitian chain with W = 1, we find that C(0, t) decays
notably slower, but is consistent with eventual thermalization
in the weakly disordered regime [77] as it appears to ap-
proach the equilibrium value 1/(4L) at long times. Studying
the correlator at larger W and exploring whether its behavior

4% 1072
_3x107?
g
2 x 1072
1(‘)l time ¢
X
(b) x W=0 o
. - W =
Aleoz .xxo.x. 1 X
E] o X X o °
& °
s ).(XX XX)O(
102<
x x ¥ T x
o © (]
9 5 3 0 3 6

FIG. 7. (a) Spin-spin autocorrelation function C(0, ¢) for L = 18
and W = 0, 1, obtained using DQT. The W = 1 curve is the average
of ~10* random-state and disorder realizations, and the area within
42 standard errors of the mean (assuming Gaussian errors) is shaded.
A power-law fit (starting at t = 9) to the W = 1 hydrodynamic tail in
shown as well. The W = 0 curve shows data from two random-state
realizations, which can be seen to agree almost perfectly. The hori-
zontal dashed line indicates the expected long-time value of C(0, t).
(b) Spatial profiles for same data as above showing snapshot at
t = 10. As can be seen from the semilogarithmic plot, C(r, t) decays
approximately exponentially with r in the disordered model.

indicates a localization transition similarly to the Hermitian
case would be an interesting direction of future research.

The full spatial profile C(r, t) at fixed time ¢ = 10 is shown
in Fig. 7(b). We find that the presence of disorder has a clear
effect on the spreading of correlations. In particular, C(r, 1)
decays approximately exponentially with r for W = 1. This
slow anomalous dynamics of C(r,t) is akin to the spreading
of correlations in the putative subdiffusive regime of the stan-
dard Hermitian MBL model below the localization transition
[100-102]. While it is challenging to numerically confirm the
asymptotic scaling form of C(r, t) at very long times and dis-
tances, Fig. 7(b) shows that the non-Hermitian disorder has a
qualitatively stronger impact on the shape of C(r, ) compared
to the nonreciprocal hopping studied in Fig. 6. In the future, it
would also be interesting to study the transport properties and
the dynamics of Eq. (2) at stronger disorder strengths, where
the level-spacing statistics indicate a crossover from chaotic
to localized behavior [77].

V. CONCLUSION

The diverse properties of non-Hermitian Hamiltonians
have recently attracted increased attention in the context of
nonequilibrium many-body quantum dynamics. In this paper,
we have studied the impact of non-Hermiticity on transport
properties and integrability in systems with a global conser-
vation law. More specifically, we have considered different
non-Hermitian perturbations to the one-dimensional spin-1/2
XXZ chain and analyzed the hydrodynamic scaling of time-
dependent spin-spin correlation functions. We have proposed
a generalization of such dynamical correlation functions to
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the case of nonunitary time evolution with a straightforward
experimental interpretation.

For the asymmetric XXZ chain (i.e., Hatano-Nelson
model), which is non-Hermitian due to the nonreciprocal
hopping amplitudes, we observed a crossover from diffusive
to fast (seemingly ballistic) transport even for rather weak
values of the non-Hermitian perturbation. Interestingly, the
signatures of ballistic transport emerged even in the presence
of next-nearest neighbor interactions for which the model be-
comes nonintegrable. This finding is surprising as it contrasts
with the usual expectation that chaotic quantum systems with
short-ranged interactions show diffusive transport. We also
considered a spin chain subjected to a non-Hermitian disorder
potential, which may undergo a transition to a non-Hermitian
many-body localized phase at strong disorder [77]. Here we
focused on moderate disorder strengths for which the model is
chaotic (Appendix A) and observed seemingly thermalizing,
yet anomalous transport with a non-Gaussian spreading of
spatiotemporal correlations.

From a technical point of view, we obtained our numeri-
cal results by exploiting the concept of dynamical quantum
typicality. Even though the nonunitary time evolution reduces
the accuracy of DQT at long times, we have shown that DQT
still allows one to accurately simulate correlation functions on
intermediate timescales for system sizes beyond the range of
standard exact diagonalization. While random states and DQT
are by now well established numerical tools, this work repre-
sents, to the best of our knowledge, the first application of
DQT to the dynamics of non-Hermitian many-body systems
(but see [103,104] for related ideas).

A natural direction of future research is to study nonuni-
tary quantum dynamics and transport in a wider range of
models, such as non-Hermitian models with higher-order mul-
tipole conservation laws [105]. It would also be interesting
to better understand the properties of off-diagonal matrix el-
ements entering the eigenstate thermalization hypothesis in
non-Hermitian many-body quantum systems [52], including
their effect on dynamics, transport, and thermalization.

The code used to generate the data in this paper can be
found at [106].
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APPENDIX A: INTEGRABILITY-BREAKING IN THE XXZ
CHAIN PERTURBED BY RANDOM IMAGINARY FIELDS

Analogous to Fig. 1, Fig. 8 shows results for the level
statistics of the disordered non-Hermitian Hamiltonian in
Eq. (2). The data are obtained in the M* = 1 subspace and
are accumulated over 100 random disorder realizations using a

S
QL
0
0 0 1
1
o
S
A
0
0 T

FIG. 8. Level-spacing statistics for the model in Eq. (2) with
W =1 and L = 14 in the M* = 1 magnetization sector, obtained
from 100 random disorder realizations. (a) Distribution of z = ge®
on the complex plane [Eq. (3)]. (b), (c) Marginal distributions P(o)
and P(0).

moderate value of W = 1. As can be clearly seen in Fig. 8, the
distribution P(z) is inhomogeneous with suppressed weight
around ¢ =0 and 6 = 0. Thus, in contrast to the non-
Hermitian hopping asymmetry g # 0 in Eq. (1), which did
not break the integrability of the XXZ chain, the random
non-Hermitian potential appears to render the model in Eq. (2)
chaotic and nonintegrable.

APPENDIX B: GENERAL DISCUSSION OF CORRELATION
FUNCTIONS FOR NON-HERMITIAN SYSTEMS

Let us provide further details on the generalization of cor-
relation functions to non-Hermitian systems. In the following,
we will restrict ourselves to correlation functions at formally
infinite temperature, i.e., evaluated with respect to the max-
imally mixed state po, = 1/(dim#), where H denotes the
Hilbert space of the system.

Thus, if A and B are Hermitian operators H — H such
that [A(¢), B] =0 for all r > 0 in the Heisenberg picture
with a Hermitian Hamiltonian, we can define the infinite-
temperature correlation function as

C(1) = (A(t)B) o = t[A()Bpoo], (BI)

i.e., the expectation value of the Heisenberg operator A(t)B
given density matrix p.. Note that we here assume, without
loss of generality, that (A),, = (B),, = 0.

Generalizing this to the non-Hermitian case is challenging
due to the definition of nonunitary time evolution in Eq. (4).
In particular, it is unclear how to meaningfully define the
Heisenberg-evolved operator A(¢) in the non-Hermitian case.

However, we can find another expression for the infinite-
temperature correlator of A and B, which agrees with Eq. (B1)
for Hermitian Hamiltonians, but remains applicable for non-
Hermitian Hamiltonians as well. To this end we decompose
the operator B into B = )", bIlz—;, where each Ilp_ is a
projector onto the B = b eigenspace. Then, using the linearity
of the trace, we can write

wlANBox] = Y blADONspx].  (B2)
b
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Note that for Hermitian Hamiltonians, using the cyclic prop-
erty of the trace, this is equivalent to

C(t) =Y _ btr[Ae """ TTp_ppoce™]. (B3)

b

Let pp—p now be the density matrix of the system starting
at infinite temperature, immediately after measuring B to be
b. Then pp—p = Np_pPoop—p/tr[I1p—ppxo], O C(¢) can be
rewritten (where we also used the projection property H%;:b =
[p=p),

C(t) =Y btrlTp—ppoc]trlAe™" pp_e™], (B4)
b
or, in the Schrodinger picture,
C@t)= Z btr[ T p=p oo ]tr[A pp=p(1)]. (B5)

b

This expression can be generalized to non-Hermitian Hamil-
tonians via Eq. (4). If B commutes with a third observable,
say, the total magnetization M* with eigenvalues m, similar
algebra allows us to (equivalently in the Hermitian case) write
the correlator of A and B as

C(t) =Y bir[ T g—p pre—mPoollA pB—p pe=m ()], (BO)

b,m

where we have used that M* and B have simultaneous
eigenspaces, and where pp—j ar:—p, is the density matrix of the
system if it starts in density matrix p., and measurements are
made of B and M* yielding results b and m.

Equation (B5) can be interpreted as the outcome of the
following procedure: Measure B at time 0 and measure A at
time ¢, and over many runs compute the expected value of
A at time ¢t conditional on the different possible outcomes
for B, and the probability of each measurement outcome for
B. Equation (B6) can be interpreted as following the same
procedure, except also measuring M* at time 0 and keeping
track of the expected value of A given the different possible
outcomes for B and M* simultaneously.

Equations (B5) and (B6) agree in the Hermitian case, but
they do not always agree in the case of non-Hermitian Hamil-
tonians due to the nonunitary time evolution (see below). In
this paper, using A =S5, B = Si/z, we will take Eq. (B6)
as our definition of the infinite-temperature correlator so that
total spin M* is conserved, thereby enabling meaningful dis-
cussion of transport properties.

Details on the disagreement of Eqs. (B5) and (B6)
in non-Hermitian systems

A key aspect is that the time evolution of density matrices
in non-Hermitian systems [Eq. (4)] becomes nonlinear. Con-
sider, for instance, a two-level system with eigenvectors |0)
and [1) with eigenvalues +i and —i, respectively. The density
matrices pg = |0) (0] and p; = |1) (1| are both constant in
time using Eq. (4), which means that if time evolution were
linear, the density matrix pyix = (0o + p1)/2 would also be

constant in time. But we can compute that

oM p et L 10) (01 + Je 1) (1]

trle= " pixe™'1] [ $¥ [0) (0] + Je= 1) (1]]

eZt e—Zt

= 2cosh@n)™ T 2cosh2n”

(B7)

is not constant in time.

A more concrete example of the disagreement between
Egs. (B5) and (B6) for one of our models can be seen analyti-
cally for the Hamiltonian defined in Eq. (2) when L = 2, h; =
2, and hy = 0, where B =S} and A = M* = §% + 55. [Note
that Egs. (B5) and (B6) are both linear in A, so setting A = M*
is the same as first setting A = S35, then setting A = 53, and
adding the two results.] In this case the matrix expressions
appearing in Eqgs. (B5) and (B6) are simple enough to be
evaluated symbolically, and we get

1 tt
Cps)(1) = — — ’
69() = 4~ 4 (&7 + 2) cosh(2r) — 41 sinh(20) + 2
(B8)
while
Cpey(1) = 1. (B9)

Thus we see that Eq. (B6) conserves magnetization, whereas
Eqg. (B5) does not.

APPENDIX C: DERIVATION OF DQT RELATION

In this section we provide a derivation of the pure-state
approximation Cy (r, t) [Eq. (7) in main text]. To this end, we
start from the expression of C(r, t) in Eq. (5),

C(r,t) = Z N tr[ns,mpoo] tl”[S§+,.Ps,;1z(t)]-

s,m

(ChH

Recall that Ps,m = Hs,mpoons,m/tr[ns,mpoo] and Poo =
1/tr[1]. Now we use Eq. (4) and the cyclic invariance of the
trace to rewrite tr[Sy_, p5m(1)] as

tr[SjHe”Ht Hs’mpooe"HT’]
t1"[37”_1tl_[s,mpooeil_ﬁt]
te[ Ty e™ 1S3, e T ]
tr[nx,meiHTze_thns,m]
- »
~ (Y| Ty me™ S5, e T [Wr)
(Y| T ettt e~ T )

= <WS,171(t)| SE-H |Ips,m(t)> s

tr[S§+rlos,m (t )] =

(623

where we have used DQT to approximate the trace by a
normalized Haar-random pure state |v), and exploited the
projection property Hf‘m = II; ,,. Moreover, in the last step,
we have used the definition of |, ,,(¢)) [Eq. (8)] together with
the definition of nonunitary time evolution [Eq. (9)]. Plugging
Eq. (C2) into Eq. (C1), we recover Eq. (7) as desired.
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APPENDIX D: THE INVERSE PARTICIPATION RATIO
IN NON-HERMITIAN SYSTEMS

Let us provide further motivation on the choice of Eq. (11)
as our definition of the inverse participation ratio in non-
Hermitian systems. We start with the usual definition of the
inverse participation ratio in Hermitian systems, already given
in Eq. (12),

N
HOEDINICATIGNE

n=1

(D1)

where N is the Hilbert space dimension. For any state |¢,), let
A,, now be the Hermitian operator on the Hilbert space defined
by

Ay n) = |én)

Ay o) =—=1v)  |v) € [span(|$,)]",

where [span(|¢,))]* is the orthogonal complement of the span
of |¢,). Then we can rewrite Eq. (D1) as

N
I(t) = Z Pr[a measurement of A, yields +172.

n=1

(D2)

(D3)

Now let us define a measurement procedure which we will
refer to as P:

(1) Choose a uniform random number k from {1, ..., N}.

(2) Measure Ay.

If the outcome of Step 2 is +1, then we define the “output”
of P to be k. Otherwise, we define the “output” of P to be
“failure.” Then we have

N
I(t) = Z Pr[P outputs n | P doesn’t fail]?,

n=1

(D4)

because

Pr[P outputs n | P doesn’t fail]
Pr[P outputs n]
" Pr[P doesn’t fail]
Pr[P outputs n]
Zi\nle Pr[P outputs m]
Pr[k = n]Pr[a measurement of A, yields +1]
Zf\n/:l Pr[k = m]Pr[a measurement of A,, yields +1]
. 1/N Pr[a measurement of A, yields +1]
SN oAl Iy () 2
_ Pr[a measurement of A,, yields +1]
B (V1)

= Pr[a measurement of A, yields +1],

(D5)

where we have used that {¢,,} form a complete basis for the
Hilbert space. Let us now turn to the case of non-Hermitian
systems, where we set {|¢k)}kN: , to be the normalized right
eigenvectors of the Hamiltonian, either in the whole Hilbert
space or in a fixed symmetry subspace. The measurement
procedure P remains perfectly well defined for this choice of
{|¢k)}kN: ;> 80 let us define /(¢) for non-Hermitian systems to
be given by Eq. (D4). The only notable complication comes

from the fact that the right eigenvectors cannot be assumed to
be an orthonormal basis for the Hilbert space, in which case
the reasoning of Eq. (D5) can be slightly modified to yield

(Sal ¥ O
SN gl )
(D6

Plugging Eq. (D6) into the definition of /(¢) in Eq. (D4) yields
the definition of /(¢) given in Eq. (11).

Pr[P outputs n | P doesn’t fail] =

APPENDIX E: CURRENT-CURRENT CORRELATION
FUNCTIONS

In addition to spin-spin correlation functions, we can also
consider current correlation functions J(t) = tr[J(¢)J pso],
which we write in a form analogous to Eq. (5) that is suitable
for non-Hermitian systems with nonunitary time evolution,

J@) =Y j T mpoc]tJ(t))m, .- (E1)

J.m

Here we have again exploited that M* and the current J =
3 ; J11; commute with each other. Specifically, we consider
the well-known Hermitian spin current of the XY or XXZ
chain [7],

. L
l _ _
J = ) Z§=1:(SZFSE+| =S¢ 85 (E2)

The current operator J = ), J is obtained from a lattice con-
tinuity equation 4S% = i[Hyxz, S{] = Je—y —J; [7]. Since
[S%, S¢*] = 0, the expression of J in (E2) remains unchanged
for the disordered non-Hermitian chain in Eq. (2). On the
other hand, for the Hatano-Nelson model (1), the continuity
equation would actually yield a non-Hermitian current opera-
tor with hopping asymmetry. We here decide to still study the
form given in Eq. (E2) in order to keep operators Hermitian
(except for H of course). Another reason for studying 7 (¢)
with the Hermitian version of J (E2) is given by the fact
that, as mentioned in Sec. II, the asymmetric hopping terms in
Eq. (1) can be obtained as cosh(g)Hxy + i sinh(g)J. The non-
Hermiticity of Eq. (1) can thus be interpreted as an external
driving by the current J [68].

DQT expressions similar to Eqgs. (7) and (8) can be ob-
tained also for a pure-state approximation 7y (¢) of the current
correlation function 7(¢). In Fig. 9(a) comparison of DQT
and ED is shown using a small system size L = 10. Analogous
to Fig. 3, we observe a convincing agreement between the
averaged pure-state approach and the exact result. Let us note,
however, that in contrast to the spin-spin correlation function,
it is less obvious that DQT yields a computational advantage
when considering 7 (¢). Namely, while the local spin oper-
ator S} is diagonal in the computational basis, such that the
projection Il ,, in the case of C(r,t) can be easily applied,
the projection IT;,, in Eq. (E1) requires diagonalization of J.
Thus, the system sizes reachable using the pure-state approach
will be smaller than in the case of C(r, t). However, since a
single diagonalization of J is not necessarily the most time-
consuming part of the simulation, DQT might still allow one
to study slightly larger systems than accessible by standard
ED.
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FIG. 9. Comparison between dynamical quantum typicality and
exact diagonalization for system size L = 10, analogous to Fig. 3,
but now for the current correlation function 7 (¢). Data are shown

for A =1.5, A, =0 with (a) g=0and (b) g=0.2.
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APPENDIX F: TIME SCALES INVOLVED IN THE DECAY
OF CORRELATION FUNCTIONS

A few words are in order as to what is meant by “inter-
mediate timescales.” Figure 10 shows an idealized cartoon of
a same-site correlator C(0, t) both in the infinite-system-size
limit and for a finite system size. The idealized infinite-
system-size limit exhibits some transient oscillations before
asymptotically converging to a power law decay, and the times
when the deviation from a perfect power law is large are
considered “early.” For any finite system size, the idealized
C(0, t) eventually converges to a nonzero limit, so times when

107t 10° 10t 102
time ¢

FIG. 10. Idealized cartoon of C(0, ¢) in the infinite-system-size

limit and for some finite system size.

the finite-size curve is converging to a finite limit while the
infinite-size curve continues to decay to zero are considered
“late.” The times in between, when the finite-size curve agrees
with both the infinite-size curve and with the power-law de-
cay which the infinite-size curve asymptotically approaches,
are considered “intermediate.” Clearly, in order to perform a
meaningful finite-size analysis of the hydrodynamic behavior,
intermediate timescales are the most useful.
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